If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+8y=195
We move all terms to the left:
y^2+8y-(195)=0
a = 1; b = 8; c = -195;
Δ = b2-4ac
Δ = 82-4·1·(-195)
Δ = 844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{844}=\sqrt{4*211}=\sqrt{4}*\sqrt{211}=2\sqrt{211}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{211}}{2*1}=\frac{-8-2\sqrt{211}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{211}}{2*1}=\frac{-8+2\sqrt{211}}{2} $
| 0.5x+4=0.25+8 | | k(-1)=-1(-1)+2 | | ¾x=⅝ | | 7x+5-3×=17 | | 1f×8=40 | | -30=-2+4x | | 8f-10=2f+8 | | -4(-3-8)=10n+20 | | -3(n+6)+10=-83 | | 8=3+(a/7) | | -3+m÷3=12 | | 10=j2 | | 2x-18+7=x+1 | | 3x^2+12x+3=22 | | (103+x)+(2x)=180 | | {3}{4}x+8=5x-14 | | 3/2x-4=26 | | 3m+4+7=-10 | | 6(m-5)+16=15-(4m-11) | | 19a=266 | | 7*n−4=31 | | 4=2.5h-12 | | 87–3t=15t+3 | | k+-1=-10 | | x+14=7x+32-3 | | 2x=3x+5/4 | | 12x-10=-8x+30 | | 4+m/8=6 | | 4.1+m=0.8 | | 0.5x+0.25x-0.2=x-0.9 | | 6(m-1)=3(3m=15) | | 171=80-u |